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Abstract

In this paper, the free flexural vibration behavior of bimodular laminated angle-ply composite plates is
studied. The formulation is based on the theory that accounts for the transverse shear and transverse
normal deformations, and incorporates higher order through the thickness approximations of the in-plane
and transverse displacements. The governing equations obtained using Lagrange’s equations of motion are
solved through the finite element approach. A detailed parametric study is carried out to study the
influences of plate geometry, lay-up, ply-angle and material properties on the free flexural vibration
response and frequencies, neutral surface locations and mode shapes of bimodulus angle-ply composite
laminated plates.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Certain fiber-reinforced composite materials, e.g. aramid–rubber, polyester–rubber, carbon–
carbon composites, soft biological tissues, etc., exhibit different elastic behavior in tension
and compression. Their actual stress–strain relationship is nonlinear, which is often approxi-
mated by two straight lines with a slope discontinuity at the origin. Such bilinear material
see front matter r 2004 Elsevier Ltd. All rights reserved.
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models are termed as bimodulus material models. The fiber-governed symmetric compli-
ance bimodulus material model, consistent with the experimental data for several materials
proposed by Bert [1], is commonly employed for the analysis of bimodular structures. Some
of the other examples of bimodulus materials are unidirectional glass fibers in an epoxy
matrix having compression moduli about 0.8 times the tension moduli, boron/epoxy with
compression moduli about 1.2 times the tension moduli, graphite/epoxy laminates having
tension moduli higher than compression moduli (about 40%), carbon/carbon composites
having tension moduli varying from two to five times greater than the compression moduli [2].
The analysis of bimodular laminates is more complicated than that of ordinary laminates
since the elastic moduli depend on the sign of the fiber direction strains, which are unknown a
priori.
The static bending analyses of laminates of bimodulus materials have attracted the attention

of many researchers [3–14]. These studies are based on either the classical plate theory or first-
order shear deformation theory. The exact solution of composite laminates [15,16] indicates that
the first-order theories do not adequately model the behavior of thick highly orthotropic
composite laminates in addition to the requirement of an arbitrary shear correction factor. The
application of higher-order theories for the study of thick bimodular multi-layered laminates
seems to be scarce in the literature [17–19]. All these works [17–19] are concerned with the cross-
ply laminates and provide results for displacements and neutral surface locations. Further, the
stress analysis of such plates has received very limited attention in the literature [20,21]. The
hybrid stress approach is employed considering cross-ply bimodular laminates in the work of
Tseng and Jiang [20], whereas failure and damage analysis is carried out using layerwise theory in
Ref. [21].
The dynamic analysis of bimodular laminates has received the attention of few researchers

[22–29]. Doong and Chen [22] and Chen and Juang [23] have studied the axisymmetric free
vibration behavior of single-layer orthotropic bimodular circular/annular plates using first-order
shear deformation theory, whereas the asymmetric free vibration and dynamic stability behaviors
of similar structures are analyzed in the work of Chen and Chen [24]. The transient response
analysis of bimodular beams is studied in Ref. [25] using the transfer matrix method and that of
the single-layer orthotropic/two-layered cross-ply bimodular plates is studied by Reddy [26],
employing analytical/finite element approaches based on first-order shear deformation theory.
The free flexural vibration analysis of single-layer orthotropic/two-layered cross-ply bimodular
rectangular plates [27,28] and shell panels [29] has been carried out using first-order shear
deformation theory using analytical/finite element methods. To the authors’ knowledge, the work
on the free flexural vibration characteristics of angle-ply bimodular laminates is not yet available
in the literature.
Here, a C0 eight-noded quadrilateral serendipity field consistent plate element developed based

on higher order theory with 11 degrees of freedom per node is used for the free flexural vibration
analysis of bimodular angle-ply laminated composite plates. The formulation is general in the
sense that it is applicable for the analysis of plates with arbitrary lamination scheme, boundary
conditions, thick and thin structures. A detailed parametric study is carried out to study the
influences of plate geometry, lay-up, ply-angle and the material properties on the free flexural
vibration frequencies, neutral surface locations and mode shapes of bimodulus angle-ply
composite laminates.
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2. Formulation

A composite plate with arbitrary lamination is considered with the coordinates x, y along
the in-plane directions and z along the thickness direction. Based on Taylor’s series expan-
sion method for deducing the two-dimensional formulation of a three-dimensional elasti-
city problem, the in-plane displacements u and v, and the transverse displacement w are assumed
as [18]

uðx; y; zÞ ¼ u0ðx; yÞ þ zyxðx; yÞ þ z2bxðx; yÞ þ z3fxðx; yÞ;

vðx; y; zÞ ¼ v0ðx; yÞ þ zyyðx; yÞ þ z2byðx; yÞ þ z3fyðx; yÞ;

wðx; y; zÞ ¼ w0ðx; yÞ þ zw1ðx; yÞ þ z2Gðx; yÞ: ð1Þ

Here, u0; v0; w0 are the displacements of a generic point on the reference surface; yx; yy are the
rotations of the normal to the reference surface about the y and x axes, respectively; w1; bx; by; G;
fx; fy are the higher-order terms in the Taylor’s series expansions, defined at the reference
surface.
The strains in terms of mid-plane deformation, rotations of normal, and higher-order terms

associated with displacements are given by

f�g ¼
�bm

�s

( )
: (2)

The vector f�bmg includes the bending and membrane terms of the strain components
and vector f�sg contains the transverse shear strain terms. These strain vectors can be
defined as

�bm

�s

( )
¼

�xx

�yy

�zz

�xy

gxz

gyz

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

u;x

v;y

w;z

u;y þ v;x

u;z þ w;x

v;z þ w;y

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼ ½Z̄�f �0 �1 �2 �3 g0 g1 g2 gT; (3a)

where

½Z̄� ¼
½I1� z½I1� z2½I1� z3½I1� ½O� ½O� ½O�

½O�T ½O�T ½O�T ½O�T ½I2� z½I2� z2½I2�

" #
: (3b)

½I1� and ½I2� are identity matrices of sizes 4	 4 and 2	 2; respectively, and ½O� is a null matrix of
size 4	 2:
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f�0g ¼

u0;x

v0;y

w1

u0;y þ v0;x

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; f�1g ¼

yx;x

yy;y

2G

yx;y þ yy;x

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
;

f�2g ¼

bx;x

by;y

0

bx;y þ by;x

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; f�3g ¼

fx;x

fy;y

0

fx;y þ fy;x

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð3cÞ

fg0g ¼
yx þ w0;x

yy þ w0;y

( )
; fg1g ¼

2bx þ w1;x

2by þ w1;y

( )
; fg2g ¼

3fx þ G;x

3fy þ G;y

( )
: (3d)

The subscript comma denotes the partial derivative with respect to the spatial coordinate
succeeding it.
Based on the fiber-governed model, the constitutive relations for an arbitrary layer k in the

laminate ðx; y; zÞ coordinate system can be expressed as

fsg ¼ f sxx syy szz txy txz tyz gT ¼ ½Q̄lk�
�bm

�s

( )
; (4)

where the terms of constitutive matrix ½Q̄lk� of the kth ply are referred to the laminate axes. These
can be obtained from the constitutive matrix ½Qlk� relating the stress and strain components in the
material principal directions (along the fiber and transverse directions) with the appropriate
transformation as outlined in the literature [30]. The matrix ½Qlk� can be expressed in terms of the
Young’s moduli, shear moduli and Poison’s ratios of the material in tension or compression
depending upon the sign of fiber direction strain. Here, the first subscript l refers to the bimodular
characteristics: l ¼ 1 denotes the properties associated with fiber-direction tension, l ¼ 2 denotes
those associated with fiber-direction compression. fsg and f�g are the stress and strain vectors,
respectively. The superscript T refers the transpose of a matrix/vector.
The governing equations are obtained using Lagrange’s equations of motion given by

d

dt
½qðT 
 UÞ=q_di� 
 ½qðT 
 UÞ=qdi� ¼ 0; i ¼ 1 to n; (5)

where T is the kinetic energy; U is the potential energy consisting of strain energy contributions
due to the in-plane and transverse stresses. fdg ¼ fd1; d2; :::::; di; :::::; dng

T is the vector of the degrees
of freedom/generalized coordinates. A dot over the variable represents the partial derivative with
respect to time. The kinetic energy of the plate is given by

TðdÞ ¼
1

2

Z Z Xn

k¼1

Z hkþ1

hk

rkf _u
k _vk _wkgf _uk _vk _wkgT dz

" #
dxdy; (6)
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where rk is the mass density of the kth layer. hk; hkþ1 are the z-coordinates of the laminate
corresponding to the bottom and top surfaces of the kth layer.
Using the kinematics given in Eq. (1), Eq. (6) can be rewritten as

TðdÞ ¼
1

2

Z Z Xn

k¼1

Z hkþ1

hk

rkf
_d

e
gT½Z�T½Z�f _d

e
gdz

" #
dxdy; (7)

where f _d
e
gT ¼ f _u0 _v0 _w0

_yx
_yy _w1

_bx
_by

_G _fx
_fyg and

½Z� ¼

1 0 0 z 0 0 z2 0 0 z3 0

0 1 0 0 z 0 0 z2 0 0 z3

0 0 1 0 0 z 0 0 z2 0 0

2
64

3
75:

The potential energy functional U is given by

UðdÞ ¼
1

2

Z Z Xn

k¼1

Z hKþ1

hk

fsgTf�gdz

" #
dxdy: (8)

Substituting the constitutive relation, Eq. (4), in Eq. (8), one can rewrite the potential energy
functional U as

UðdÞ ¼
1

2

Z Z Xn

k¼1

Z hkþ1

hk

ðf�bm�sg
T½Q̄lk�f�bm�sgÞdz

" #
dxdy: (9)

For obtaining the element level governing equations, the kinetic and the total potential energies
(T and U) may be conveniently rewritten as

Tðde
Þ ¼

1

2
f_d

e
gT½Me�f_d

e
g; (10)

Uðde
Þ ¼

1

2
fde

gT½Ke�fde
g: (11)

Here, ½Ke� and ½Me� are the elemental stiffness and mass matrices, and fde
g is the vector of the

elemental degrees of freedom/generalized coordinates.
Substituting Eqs. (10) and (11) in Eq. (5), one obtains the governing equation for the element as

½Me�f€d
e
g þ ½Ke�fde

g ¼ f0g: (12)

The coefficients of mass and stiffness matrices involved in governing equation (12) can be
rewritten as the product of the term having thickness coordinate z alone and the term containing x
and y. In the present study, while performing the integration, terms having thickness coordinate z

are explicitly integrated, whereas the terms containing x and y are evaluated using full integra-
tion with 3	 3 points Gauss integration rule. Further while carrying out the integration along
the z-direction, in addition to performing the integration in piecewise manner from layer to
layer, the possibility of different properties (tension or compression) within a layer has also to be
taken care.
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Following the usual finite element assembly procedure, the governing equations of the laminate
are obtained as

½M�f€dg þ ½K�fdg ¼ f0g; (13)

where ½K � and ½M� are the global stiffness and mass matrices, respectively.
Eq. (13) can be solved using Newmark’s direct time integration scheme for the free transient

response analysis. The free vibration frequencies ðoÞ and associated mode shapes can be extracted
from standard eigenvalue problem:


o2½M�fdg þ ½K �fdg ¼ f0g: (14)
3. Neutral surface location

The key element in the analysis of bimodular laminates is the determination of the
neutral surface location. The portion of the laminate on one side of the neutral surface is in
compression and the one on the other side is in tension. However, the location of the neutral
surface is not known a priori. The location of the neutral surface is determined through the
iterative solution.
If the neutral surface is located inside a layer (called the ‘‘neutral surface layer’’) instead of at

the interface between two layers, the neutral surface layer is split into two layers. The neutral
surface is determined using the zero fiber direction strain condition. An iteration procedure is
necessary to determine the proper combination of the material properties and neutral surface.
First, the neutral surface is assumed to be at the middle surface of the laminate for the purpose of
initiating the iterative procedure. Then, any layer which straddles the neutral surface is split into
two layers, a tension layer and a compression layer, and then the tension or compression
properties are assigned to each layer. Based on this, the analysis is carried out and the
deformation shape or normalized mode shape of interest is used for obtaining the new neutral
surface location. This is repeated until the neutral surface location, frequencies and normalized
mode shape from two consecutive iterations converge to a specified tolerance limit less than
0.001%. The above neutral surface iteration procedure is illustrated in Fig. 1. These steps are
repeated for obtaining the frequencies corresponding to positive and negative half cycles of
different modes.
4. Element description

In the present work, a C0 continuous, eight-noded serendipity quadrilateral shear flexible plate
element with 11 degrees of freedom (u0; v0; w0; yx; yy , w1; bx; by , G; fx and fy: HSDT) developed
based on the field consistency approach [31] is employed. The field variables are expressed in terms
of their nodal values using shape functions as

ðu0; v0;w0; yx; yy;w1; bx;by;G;fx;fyÞ ¼
X8
i¼1

N0
i ðu0i; v0i;w0i; yxi; yyi;w1i; bxi; byi;Gi;fxi;fyiÞ; (15)
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where N0
i are the original shape functions for the eight-noded quadratic serendipity element. It

can be noted here that the derivatives of shape functions N0
i;x and N0

i;y required for defining
the various strain components within the element are linear in x and quadratic in y, and quadratic
in x and linear in y, respectively, as the original interpolation functions are of quadratic type (in x
and y) for the eight-noded element.
If the interpolation functions for an eight-noded element are used directly to interpolate

the 11 field variables uo; . . . ;fy in deriving the transverse shear strains, the element will lock
and show oscillations in the transverse shear stresses. Field consistency requires that the
transverse shear strains must be interpolated in a consistent manner [31]. This is achieved here by
smoothing the original interpolation functions in a least-square fashion accurate to the desired
form, i.e. the functions that are consistent with the derivative functions (N0

i;x or N0
i;y). Here,

the smoothed interpolation functions N1
xi and N1

yi consistent with derivative functions w0;x and
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w0;y are required for the interpolation of yx and yy to be substituted in the expressions for the
transverse shear strain components [ðyx þ w0;xÞ and ðyy þ w0;yÞ] given in Eq. (3d), i.e. N1

xi should
be of the form linear in x and quadratic in y, and N1

yi quadratic in x and linear in y, as outlined in
Ref. [31].
Using the smoothed interpolation functions, the constrained transverse shear strain

components are expressed as

ðyx þ w0;xÞ ¼
X8
i¼1

ðN1
xiyxi þ N0

i;xw0iÞ; (16a)

ðyy þ w0;yÞ ¼
X8
i¼1

ðN1
yiyyi þ N0

i;yw0iÞ: (16b)

The other strain fields are expressed in terms of original shape functions ðN0
i Þ and their

derivatives.
The element thus derived is tested for static analysis of bimodular angle/cross-ply laminates

subjected to thermal and mechanical loads, and is found free from the rank deficiency, shear
locking and poor convergence syndrome [32,33].
5. Results and discussion

The study, here, is mainly concerned to predict the free flexural vibration characteristics of
bimodulus laminated angle-ply plates employing field-consistent finite element developed based
on higher-order theory. The first layer corresponds to the bottom-most layer and the ply angle is
measured from x-axis in an anti-clockwise direction. All the layers are of equal thickness. Based
on progressive mesh refinement, a 10	 10 grid mesh is found to be adequate to model the full
laminate for the present analysis.
The material properties considered in the present analysis in tension and compression are as

follows [17,18]:
Material 1: E1t ¼ 3:58GPa; E2t ¼ E3t ¼ 0:00909GPa; G12t ¼ G13t ¼ 0:0037GPa; G23t ¼

0:0029GPa; n12t ¼ n23t ¼ n13t ¼ 0:416:
E1c ¼ E2c ¼ E3c ¼ 0:012GPa; G12c ¼ G13c ¼ 0:0037GPa; G23c ¼ 0:00499GPa; n12c ¼ n23c ¼

n13c ¼ 0:205:
Here, the subscripts t and c refer to the tensile and compressive properties, respectively.
Material 2: E1t ¼ 0:617GPa; E2t ¼ E3t ¼ 0:008GPa; G12t ¼ G13t ¼ 0:00262GPa; G23t ¼

0:00233GPa; n12t ¼ n23t ¼ n13t ¼ 0:475:
E1c ¼ 0:0369GPa; E2c ¼ E3c ¼ 0:0106GPa; G12c ¼ G13c ¼ 0:00267GPa; G23c ¼ 0:00475GPa;

n12c ¼ n23c ¼ n13c ¼ 0:185:
Material 3: E1t=E2t ¼ 25; E2t ¼ E3t; G12t=E2t ¼ G13t=E2t ¼ 0:5; G23t=E2t ¼ 0:2; n12t ¼ n23t ¼

n13t ¼ 0:25:
E1c=E2c ¼ 25; E2c ¼ E3c ¼ 1GPa; G12c=E2c ¼ G13c=E2c ¼ 0:5; G23c=E2c ¼ 0:2; n12c ¼ n23c ¼

n13c ¼ 0:25; E2t=E2c ¼ 0:2:
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The simply supported and clamped–clamped boundary conditions considered here are:
Simply supported:

v0 ¼ w0 ¼ yy ¼ w1 ¼ G ¼ by ¼ fy ¼ 0 at x ¼ 0; a;

u0 ¼ w0 ¼ yx ¼ w1 ¼ G ¼ bx ¼ fx ¼ 0 at y ¼ 0; b:

Clamped–clamped:

u0 ¼ v0 ¼ w0 ¼ yx ¼ yy ¼ w1 ¼ bx ¼ by ¼ G ¼ fx ¼ fy ¼ 0 at x ¼ 0; a and y ¼ 0; b:

Here, a and b refer to the length and width of the plate, respectively.
The transverse displacement ðwÞ and fiber direction strain ðef Þ presented here for free vibration

time response analysis correspond to the ðx; yÞ locations of ða=2; b=2Þ: Further, the non-
dimensional forms used here for presentation of results are: frequencies ðO1;O2Þ ½¼

ðo1;o2Þb
2
ðr=E2ch

2
Þ
1=2; o1 and o2 are the frequencies in positive half and negative half cycles,

respectively], average frequency O½¼ ð1=2ÞðO
1
1 þ O
1

2 Þ

1
�; transverse displacement W ½¼ w=h�;

neutral surface locations: Znx ¼ znx=h and Zny ¼ zny=h; and time t½¼ t=ð4p2b4r=E2ch
2
Þ
1=2

�:
Before proceeding for the detailed study, the formulation developed herein is validated against

available analytical solutions [27] for two-layered cross-ply simply supported rectangular
bimodular laminates and the comparison of non-dimensional frequencies and neutral surface
locations is highlighted in Table 1. It can be seen from this table that the present results are in
good agreement with those in the literature [27]. It may be noted here that first-order shear
deformation theory is employed in Ref. [27] and the results are presented for moderately thick
rectangular plates ðb=h ¼ 10Þ for which the higher-order model results of present investigation are
found to be close.
After the validation of the model, the time response analysis is carried out for two- and eight-

layered cross/angle ply bimodular laminates to highlight the characteristic response behavior. The
Table 1

Comparison of nondimensional frequencies ðO1;O2Þ and neutral surface locations (Znx and Zny) for different aspect

ratios ða=bÞ of two-layered cross-ply (01/901) bimodular simply supported laminates ðb=h ¼ 10Þ

a=b O1 O2 Znx1
Zny1 Znx2

Zny2

Present Ref. [27] Present Ref. [27] Present Ref. [27] Present Ref. [27] Present Ref. [27] Present Ref. [27]

Material1

0.5 13.8161 13.88 19.0495 19.38 
0.0164 
0.0171 0.4257 0.4247 0.4442 0.4457 
0.0639 
0.0648

0.7 9.3063 9.353 11.4760 11.60 
0.0235 
0.0240 0.4337 0.4338 0.4424 0.4434 
0.0480 
0.0490

1 6.9989 7.038 6.9989 7.038 
0.0343 
0.0347 0.4390 0.4394 0.4390 0.4394 
0.0343 
0.0347

1.4 6.0019 6.037 4.8264 4.838 
0.0487 
0.0494 0.4419 0.4423 0.4333 0.4335 
0.0245 
0.0250

2 5.5146 5.551 3.7112 3.712 
0.0700 
0.0705 0.4436 0.4437 0.4230 0.4228 
0.0172 
0.0174

Material2

0.5 15.6341 15.95 18.2319 19.12 
0.0799 
0.0830 0.3598 0.3569 0.3632 0.3687 
0.1297 
0.1335

0.7 9.9024 10.04 11.1249 11.43 
0.0853 
0.0868 0.3606 0.3603 0.3634 0.3664 
0.1099 
0.1119

1 6.9963 7.085 6.9963 7.084 
0.0950 
0.0959 0.3622 0.3631 0.3622 0.3632 
0.0950 
0.0960

1.4 5.8459 5.928 5.1348 5.154 
0.1108 
0.1115 0.3635 0.3648 0.3593 0.3589 
0.0861 
0.0870

2 5.3551 5.435 4.2979 4.310 
0.1387 
0.1389 0.3645 0.3660 0.3532 0.3514 
0.0808 
0.0817
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Fig. 2. Free vibration transient response of two- and eight-layered cross-ply simply supported laminates ðb=h ¼ 10Þ: (a)

two-layer (01/901), a=b ¼ 1; (b) two-layer (01/901), a=b ¼ 2; (c) eight-layer ð0�=90�Þ4; a=b ¼ 1; (d) eight-layer ð0�=90�Þ4;
a=b ¼ 2:

Fig. 3. Free vibration transient response of two- and eight-layered angle-ply simply supported laminates ðb=h ¼ 10Þ: (a)

two-layer ð15�=
 15�Þ; a=b ¼ 2; (b) eight-layer ð15�=
 15�Þ4; a=b ¼ 2:

B.P. Patel et al. / Journal of Sound and Vibration 286 (2005) 167–186176
initial conditions for the transient response analysis are assumed as zero displacement and non-
zero velocity proportional to the fundamental mode shape obtained from eigenvalue analysis. The
results are highlighted in Figs. 2 and 3 for cross-ply [ð0�=90�Þ and ð0�=90�Þ4] and angle-ply
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[ð15�=
 15�Þ and ð15�=
 15�Þ4] simply supported laminates (b=h ¼ 10; a=b ¼ 1; 2; Material 1).
The inserted figures (in Figs. 2 and 3) depict the through the thickness fiber direction strain
distribution during positive half cycle (upper inserted figure) and negative half cycle (lower
inserted figure). These fiber direction strain distributions are important for the assignment of
tensile/compressive properties to different layers. It can be observed from Fig. 2 that the time
period and response amplitudes are different for positive and negative half cycles for cross-ply
rectangular laminate cases ða=b ¼ 2Þ; whereas they are the same for square ða=b ¼ 1Þ geometry.
This information is not clearly brought out in the literature through transient free response
analysis. However, for angle-ply laminates considered here, the time period and amplitude are the
same, as depicted in Fig. 3, for positive and negative half cycles, irrespective of aspect ratio ða=bÞ:
It is apt to make a mention here that the response frequency values obtained from the response
analysis match very well with those obtained from eigenvalue analysis. Therefore, detailed
parametric studies are carried out using the eigenvalue approach.
The convergence of iterative eigenvalue approach for the determination of free vibration

frequencies and mode shapes is highlighted in Figs. 4 and 5 for two-layered angle-ply ðy=
 yÞ
simply supported square laminates ðb=h ¼ 100; a=b ¼ 1; y ¼ 15�; 45�Þ: In these figures, the
frequency values and corresponding mode shapes for the first three and last two consecutive
iterations are presented. For the purpose of starting the iteration procedure, initially all the layers
are assigned tensile properties. Then the analysis is carried out and the normalized mode shape of
interest (with wavenumbers m along the x-axis and n along the y-axis) is used for evaluating the
fiber direction strain distribution and, in turn, for property assignment. It may be emphasized here
that for each mode combination ½ðm; nÞ ¼ ð1; 1Þ; ð1; 2Þ; ð2; 2Þ�; the iteration procedure has to be
carried out separately. It can be seen from these figures that the number of iterations required to
achieve the converged results varies with the mode and geometrical/lamination parameters of the
bimodular plate. It can also be viewed from these figures that, in general, the mode shapes
(converged one) of bimodular plates are different from mode shapes of unimodular plates (results
pertaining to the first iteration, wherein the tensile properties are used for the complete laminates).
Further, the contour lines of the converged mode shapes show elongation along one diagonal and
contraction along the other one for fundamental mode and higher mode with wavenumbers
ðm; nÞ ¼ ð2; 2Þ:
Next, the influence of different geometrical and lamination scheme parameters of the plates on

the fundamental frequencies is studied. The results are highlighted in Tables 2 and 3 for simply
supported and clamped–clamped boundary conditions, respectively, considering different
thickness ratios (b=h ¼ 5; 10, 50 and 100), ply-angles (y ¼ 15�; 301and 451), number of layers
ðN ¼ 2; 4; 8Þ; and aspect ratios ða=b ¼ 1; 2Þ: It can be observed from these tables that the frequency
parameter, in general, increases with the increase in the number of layers, ply-angle and thickness
ratio, whereas it shows decreasing trend with increase in a/b ratio. The variation of frequency
parameter with number of layers or ply-angle is mostly linear for thick plate cases, whereas it
varies nonlinearly for thin ones. The trend of frequency parameter change with thickness ratio
ðb=hÞ is nonlinear and the rate of increase of frequency parameter with respect to b=h is
significantly more at lower b=h values compared to high b=h values for a chosen ply-angle and
number of layers. The percentage change in the frequency parameter values with increasing
number of layers is lowest for the 151case and highest for the 451case. Furthermore, the influence
of ply-angle is more on frequency parameter values for thin square plate cases ðb=h ¼ 100; 50Þ
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Fig. 4. Convergence study for frequency and mode shape of two-layered angle-ply square simply supported laminates

½ð15�=
 15�Þ; b=h ¼ 100; a=b ¼ 1�:
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Fig. 5. Convergence study for frequency and mode shape of two-layered angle-ply square simply supported laminates

½ð45�=
 45�Þ; b=h ¼ 100; a=b ¼ 1�:
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Table 2

Nondimensional fundamental frequencies ðOÞ and neutral surface locations (Znx and Zny) for angle-ply ½ðy=
 yÞN=2�

bimodular simply supported laminates (a=b ¼ 1; 2; Material 1)

Thick. ratio

ðb=hÞ

Ply-angle ðyÞ Number of

layers ðNÞ

Aspect ratio ða=bÞ ¼ 1 a=b ¼ 2

O Znx1
Zny1 O Znx1

Zny1

5 15 2 6.1241 
0.4229 0.1585 3.7759 0.4254 
0.0658

4 6.2215 
0.4280 0.1752 3.8817 0.4832 
0.0854

8 6.3809 
0.4554 0.1730 3.9775 0.5879 
0.0899

30 2 6.8484 
0.4268 0.2123 4.7204 0.0564 0.0831

4 7.1373 
0.5252 0.2711 5.1633 0.5685 0.1094

8 7.4803 
0.6459 0.2991 5.4234 
0.1192 0.1218

45 2 7.7202 
0.0869 
0.0869 4.9082 
0.1906 0.2619

4 8.3996 
0.1936 
0.1936 5.2020 
0.1753 0.4142

8 8.8751 
0.2715 
0.2715 5.5244 
0.1517 0.4947

10 15 2 7.2459 
0.4199 0.1660 4.2467 0.4313 
0.0692

4 7.4103 
0.4240 0.1726 4.4169 0.5146 
0.0812

8 7.6475 
0.4538 0.1477 4.5317 0.6278 
0.0800

30 2 8.4597 
0.4421 0.2091 5.7781 
0.0641 0.1308

4 8.9652 
0.5700 0.2407 6.6405 0.0044 0.2341

8 9.5011 
0.6954 0.2457 7.0348 0.0982 0.2462

45 2 10.2474 
0.0718 
0.0718 5.7914 
0.1941 0.2809

4 11.7086 
0.1821 
0.1821 6.2413 
0.1438 0.4437

8 12.4408 
0.2332 
0.2332 6.7171 
0.1047 0.5281

50 15 2 8.0668 
0.4173 0.1700 4.7019 0.4297 
0.0744

4 8.2907 
0.4211 0.1656 4.9288 0.5365 
0.0829

8 8.5917 
0.4549 0.1291 5.0649 0.6514 
0.0793

30 2 9.6532 
0.4555 0.2141 6.6568 
0.1629 0.1553

4 10.3746 
0.6145 0.2309 8.1713 
0.2985 0.3955

8 11.1093 
0.7457 0.2295 8.8300 
0.3468 0.4435

45 2 12.8303 
0.0488 
0.0488 6.3213 
0.2138 0.2888

4 16.2946 
0.1466 
0.1466 6.8989 
0.1428 0.4599

8 17.6408 
0.1841 
0.1841 7.4954 
0.1008 0.5515

100 15 2 8.1767 
0.4170 0.1689 4.7768 0.4267 
0.0750

4 8.4022 
0.4212 0.1645 5.0079 0.5362 
0.0844

8 8.7089 
0.4559 0.1289 5.1442 0.6491 
0.0814

30 2 9.7596 
0.4555 0.2157 6.7428 
0.1787 0.1569

4 10.5059 
0.6177 0.2343 8.3406 
0.3366 0.4018

8 11.2598 
0.7486 0.2321 9.0507 
0.4109 0.4528

45 2 13.0711 
0.0428 
0.0428 6.3634 
0.2204 0.2894

4 16.8474 
0.1387 
0.1387 6.9534 
0.1510 0.4615

8 18.3532 
0.1697 
0.1697 7.5569 
0.1106 0.5549
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compared to thick and moderately thick ones ðb=h ¼ 5; 10Þ: It is also revealed from these tables
that the neutral surface locations, in general, shift towards outer surfaces with increase in the
number of layers. The influence of lamination parameters on the fundamental frequencies of
rectangular plates is less compared to square ones. It can also be inferred from Tables 2 and 3 that
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Table 3

Nondimensional fundamental frequencies ðOÞ and neutral surface locations (Znx and Zny) for angle-ply ½ðy=
 yÞN=2�

bimodular clamped–clamped laminates (a=b ¼ 1; 2; Material 1)

Thick. ratio

ðb=hÞ

Ply-angle ðyÞ Number of

layers ðNÞ

Aspect ratio ða=bÞ ¼ 1 a=b ¼ 2

O Znx1
Zny1 O Znx1

Zny1

5 15 2 9.7810 
0.1937 
0.0075 6.4128 
0.0781 0.0004

4 10.0595 
0.0092 0.0278 6.6739 
0.3765 0.0266

8 10.4685 
0.0319 0.0343 6.9648 
0.0072 0.0482

30 2 9.8881 
0.1278 
0.0061 7.0014 
0.0924 
0.0187

4 10.5133 
0.0210 0.0378 7.7009 
0.4227 
0.0020

8 11.1173 
0.0361 0.0169 8.2725 
0.5413 0.0716

45 2 9.9805 
0.0472 
0.0472 7.6248 
0.0288 
0.0573

4 10.6922 0.0884 0.0885 8.2844 
0.0450 0.1043

8 11.3291 
0.0456 
0.0457 8.7853 
0.3002 
0.1196

10 15 2 16.8911 
0.0148 
0.0227 9.2340 
0.0191 
0.0149

4 17.7160 
0.2984 0.0096 10.2351 
0.2552 0.0035

8 18.4634 
0.0288 0.0415 10.7150 
0.3291 0.0147

30 2 17.0586 
0.0487 
0.0490 10.7934 
0.1015 
0.0199

4 18.9282 
0.3280 0.0119 12.9490 
0.3679 
0.0346

8 20.1098 0.0468 0.0563 13.9483 
0.6631 
0.0064

45 2 17.1940 
0.0572 
0.0572 12.7948 
0.0960 
0.0361

4 19.5727 
0.1325 
0.1326 14.8335 
0.0785 
0.1425

8 20.9926 
0.0998 
0.0995 15.9626 
0.0449 
0.1058

50 15 2 35.4195 
0.0334 
0.1057 13.2195 
0.0305 
0.0478

4 48.8876 
0.1202 
0.2038 18.2098 
0.1341 
0.1268

8 52.5226 
0.0922 
0.2144 19.7126 
0.1299 
0.1365

30 2 33.5983 
0.0332 
0.1197 16.4397 
0.1005 
0.0290

4 49.8249 
0.1227 
0.2057 24.9614 
0.2426 
0.0770

8 54.2786 
0.1090 
0.2037 27.3692 
0.2706 
0.0783

45 2 33.5368 
0.0670 
0.0670 21.7393 
0.1406 
0.0368

4 50.4590 
0.1562 
0.1562 33.4867 
0.2630 
0.1084

8 55.1834 
0.1655 
0.1655 36.8801 
0.3010 
0.0868

100 15 2 38.1568 
0.0375 
0.1195 13.6794 
0.0309 
0.0526

4 56.8667 
0.1160 
0.2720 19.3394 
0.1236 
0.1405

8 62.4386 
0.0924 
0.3176 21.0480 
0.1220 
0.1572

30 2 35.9713 
0.0356 
0.1217 17.0925 
0.1007 
0.0294

4 56.9481 
0.1172 
0.2346 26.8356 
0.2324 
0.0784

8 62.9164 
0.1081 
0.2623 29.5547 
0.2563 
0.0847

45 2 35.9629 
0.0678 
0.0678 22.7849 
0.1421 
0.0361

4 57.5299 
0.1579 
0.1579 36.6490 
0.2733 
0.1037

8 63.5545 
0.1770 
0.1770 40.6301 
0.3132 
0.0914
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the behavior of clamped–clamped plates is qualitatively similar to that of simply supported ones.
However, the frequency values are significantly higher and their variation with different
geometrical/lamination parameters is more for clamped–clamped plates compared to simply
supported cases.
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A detailed study is also carried out to highlight the variation of higher-mode frequencies with
geometrical and lamination scheme parameters and the results are presented in Table 4. In
general, the behavior is qualitatively similar to that corresponding to the fundamental mode.
However, the effect of number of layers is more in optimizing the frequency values corresponding
Table 4

Nondimensional higher mode frequencies ðOÞ for angle-ply ½ðy=
 yÞN=2� bimodular simply supported laminates ða=b ¼

1; 2; Material 1)

Thick. ratio

ðb=hÞ

Ply-angle ðyÞ Number of

layers ðNÞ

Aspect ratio ða=bÞ ¼ 1 a=b ¼ 2

ðm; nÞ ¼ ð1; 2Þ (2, 1) (2,2) ðm; nÞ ¼ ð1; 2Þ (2, 1) (2,2)

5 15 2 11.4499 10.5923 13.8353 9.9630 5.8760 11.1751

4 11.6224 11.2508 13.8409 9.9686 6.6621 11.3080

8 11.8115 11.3637 13.8421 10.0134 7.1167 11.4155

30 2 12.0896 11.8859 12.6085 10.9540 7.2803 12.3076

4 12.2890 12.3745 13.3078 11.9547 8.1595 12.5941

8 12.4698 12.5750 13.8588 12.6455 8.7861 12.8127

45 2 13.6201 13.6201 19.9291 10.7857 6.8646 13.1890

4 14.9223 14.9223 20.2513 11.7245 7.6079 13.4608

8 15.8196 15.8196 21.5670 12.3381 8.1971 13.8595

10 15 2 14.4132 17.3426 24.0690 11.9302 7.7885 14.5097

4 14.6483 17.9364 24.2124 12.0366 8.7380 15.3453

8 14.9857 18.5295 24.2185 12.1606 9.3634 16.9661

30 2 16.3290 17.6520 24.2486 14.3524 9.7007 17.5698

4 17.1297 19.0760 24.7231 16.4057 11.4842 20.0023

8 17.9143 20.1250 25.1203 17.9120 12.5352 21.8124

45 2 19.5423 19.5423 28.3080 14.6266 8.7290 18.0518

4 22.6867 22.6867 34.2368 16.1266 9.9124 19.0249

8 24.6390 24.6390 36.1461 17.1964 10.8649 20.5715

50 15 2 16.8074 22.8794 33.9567 13.5685 9.1547 17.2495

4 17.2565 23.7267 34.5051 13.8801 10.5309 19.1525

8 17.7657 24.5370 34.9138 14.1126 11.3674 20.9610

30 2 20.2455 23.1988 33.9276 17.7566 12.1080 27.2160

4 22.2483 26.2962 43.0186 21.9551 15.7994 31.4080

8 23.9132 28.6667 43.9351 24.1802 17.5839 35.4384

45 2 27.6581 27.6581 44.2413 17.7835 10.1062 23.3026

4 36.1460 36.1460 60.1528 20.3178 11.8178 26.6586

8 40.0933 40.0933 68.6894 22.2548 13.1671 29.5616

100 15 2 17.1321 23.3195 31.6483 13.7937 9.3253 17.7135

4 17.5960 24.2044 33.9569 14.1328 10.7461 19.7198

8 18.1136 25.0395 35.9233 14.3807 11.5987 21.5876

30 2 20.6617 23.6753 34.9534 18.1356 12.4054 28.0739

4 22.8080 26.9440 41.0757 22.6133 16.3691 33.2917

8 24.5831 29.4277 45.9600 24.9316 18.2645 37.6153

45 2 28.6470 28.6470 46.9057 18.0539 10.2579 23.8701

4 38.2944 38.2944 66.4517 20.6517 12.0184 27.8030

8 42.6016 42.6016 78.8389 22.6493 13.3994 30.4875
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Table 5

Nondimensional fundamental frequencies ðOÞ and neutral surface locations (Znx and Zny) for angle-ply ½ðy=
 yÞN=2�

square simply supported laminates (a=b ¼ 1; Material 3)

Thick. ratio

ðb=hÞ

Ply-angle ðyÞ Number of

layers ðNÞ

O Znx1
Zny1 Znx2

Zny2

5 15 2 6.3304 
0.1732 
0.0455 0.1738 0.0455

4 6.2747 0.0657 
0.0525 
0.0655 0.0529

8 6.5815 0.0795 
0.0067 
0.0795 0.0066

30 2 6.5201 
0.1365 0.0107 0.1371 
0.0109

4 6.4114 0.1390 0.1047 
0.1502 
0.1072

8 6.7897 0.1199 0.2130 
0.1557 
0.2133

45 2 6.7132 
0.0280 
0.0280 0.0284 0.0284

4 6.6582 
0.1814 
0.1814 0.1814 0.1814

8 6.9754 0.0463 0.0463 
0.0461 
0.0461

100 15 2 9.0667 0.1356 0.1024 
0.1352 
0.1019

4 10.1666 0.1855 0.1855 
0.1853 
0.0691

8 10.5366 0.2015 0.0707 
0.2014 
0.0706

30 2 9.6456 0.1557 
0.0222 
0.1547 0.0225

4 11.7408 0.2544 
0.0796 
0.2538 0.0795

8 12.3499 0.2845 
0.0997 
0.2842 0.0996

45 2 10.4243 0.0490 0.0490 
0.0490 
0.0490

4 12.8296 0.0960 0.0960 
0.0961 
0.0961

8 13.4518 0.1014 0.1014 
0.1015 
0.1015
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to modes with ðm; nÞ ¼ ð2; 1Þ and (2,2) for rectangular laminates compared to square ones.
Further, it can be noticed from Table 3 that the frequency parameter values corresponding to
mode (1, 2) are lower compared to those of (2, 1) mode for square laminates with ply-angles
151and 301, whereas they are the same for the 451case as expected. But, the combined influence of
ply-angle and aspect ratio for rectangular case leads to significantly lower frequency parameter
values for the (2, 1) mode compared to those of the (1, 2) mode.
Finally, the fundamental frequency parameters for bimodular thick and thin plates with

compressive properties higher than the tensile ones (Material 3) are depicted in Table 5. It can be
revealed from this table that the variation of frequency parameter with ply-angle is mostly linear
even for thin plates unlike the plates of Material 1, and in addition, four-layered thick laminates
yield lower frequency values compared to those of two-layered thick plates. Further, the
frequency parameter values are higher for the 151ply-angle case and lower for the 451ply-angle
case compared to those of Material 1 (see Table 2), whereas for 301cases it depends on
the thickness ratio and number of layers. The location of neutral surfaces is significantly closer to
the middle surface compared to Material 1 cases.
6. Conclusions

The free flexural vibration analysis of bimodular angle-ply laminated composite plates is carried
out using field-consistent finite element based on higher order theory incorporating cross-sectional
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warping and transverse normal deformation through nonlinear approximation of in-plane and
transverse displacement components. The parametric studies are made to provide some insight
into the effects of plate geometry, lay-up, ply-angle, the material properties and boundary
conditions on the free flexural vibration response and frequencies, neutral surface locations and
mode shapes of bimodulus angle-ply composite laminates. From the detailed parametric study,
the following conclusions can be drawn:
(i)
 Time period and response amplitudes are different for positive and negative half cycles of
vibrations for cross-ply rectangular laminates, whereas they are the same for cross-ply
square and angle-ply plates.
(ii)
 Mode shapes of bimodular plates are different from those of unimodular plates and
their contour lines show elongation along one diagonal and contraction along the
other one.
(iii)
 The frequency parameter, in general, increases with the increase in the number of layers, ply-
angle and thickness ratio, whereas it shows decreasing trend with increase in aspect ratio.
(iv)
 The variation of frequency parameter with the number of layers or ply-angle is mostly linear
for thick plate cases, whereas it varies nonlinearly for thin ones.
(v)
 The percentage change in the frequency parameter values with increasing number of layers is
the lowest for the 151case and highest for the 451case.
(vi)
 Effect of lamination scheme is more on frequency parameter values for thin plates compared
to thick and moderately thick ones, particularly, more so for square plates.
(vii)
 The frequency values are significantly higher and their variation with different geometrical/
lamination parameters is more for clamped–clamped plates compared to simply supported
ones.
(viii)
 Neutral surface locations, in general, shift towards outer surfaces with increase in the
number of layers.
(ix)
 Frequency parameter values corresponding to mode (1, 2) are lower compared to those of (2,
1) mode for square laminates with 151and 301ply-angles, whereas the combined influence of
ply-angle and aspect ratio for rectangular plates leads to significantly lower frequency
parameter values for the (2, 1) mode compared to those of (1, 2) mode.
(x)
 Neutral surface locations are significantly closer to the middle surface for plates of Material
3 compared to those of Material 1.
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